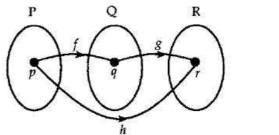
composite functions


[SQA] 1.
$$f(x) = 3 - x$$
 and $g(x) = \frac{3}{x}, x \neq 0$.
(a) Find $p(x)$ where $p(x) = f(g(x))$.
(b) If $q(x) = \frac{3}{3 - x}, x \neq 3$, find $p(q(x))$ in its simplest form.

$$\frac{Part \quad Marks \quad Level \quad Calc. \quad Content \qquad Answer \qquad U1 \text{ OC2}}{(a) \quad 2 \quad C \quad CN \quad A4 \qquad 3 - \frac{3}{x}} 2000 \text{ P2 Q3}}{(b) \quad 2 \quad C \quad CN \quad A4 \qquad x} (b) \quad 1 \quad A/B \quad CN \quad A4 \qquad (b) \quad 1 \quad A/B \quad CN \quad A4 \qquad (c) \quad 1 \quad A/B \quad CN \quad A4 \quad (c) \quad 1 \quad A/B \quad CN \quad A4 \quad (c) \quad 1 \quad A/B \quad CN \quad A4 \quad (c) \quad 1 \quad A/B \quad CN \quad A4 \quad (c) \quad 1 \quad A/B \quad CN \quad A4 \quad (c) \quad 1 \quad A/B \quad CN \quad A4 \quad (c) \quad 1 \quad A/B \quad CN \quad A4 \quad (c) \quad 1 \quad A/B \quad CN \quad A4 \quad (c) \quad 1 \quad A/B \quad CN \quad A4 \quad (c) \quad 1 \quad A/B \quad CN \quad A4 \quad (c) \quad 1 \quad A/B \quad CN \quad A4 \quad (c) \quad 1 \quad A/B \quad CN \quad A4 \quad (c) \quad 1 \quad A/B \quad CN \quad A4 \quad (c) \quad 1 \quad A/B \quad CN \quad A4 \quad (c) \quad 1 \quad A/B \quad CN \quad A4 \quad (c) \quad 1 \quad A/B \quad CN \quad A4 \quad (c) \quad$$

[SQA] 2. The diagram illustrates three functions f, g and h. The functions are defined by f(x) = 2x + 5 and $g(x) = x^2 - 3$.

The function h is such that whenever f(p) = q and g(q) = r then h(p) = r.

- (a) If q = 7, find the values of p and r.
- (b) Find a formula for h(x), in terms of x.

2

3

2 2

	Part	Marks	Level	Calc.	Content	Answer	U1 OC2
ſ	<i>(a)</i>	2	С	NC	A4		1991 P1 Q19
	(b)	2	A/B	NC	A4		

•
$$p=1$$

•
$$r = 46$$

•
$$h(x) = g(f(x))$$

•
$$h(x) = (2x+5)^2 - 3$$

[SQA] 3. On a suitable set of real numbers, functions *f* and *g* are defined by $f(x) = \frac{1}{x+2}$

and
$$g(x) = \frac{1}{x} - 2$$
.

Find f(g(x)) in its simplest form.

Part	Marks	Level	Calc.	Content	Answer	U1 OC2
	3	С	NC	A4		1992 P1 Q6
• ¹ f	$\left(\frac{1}{x}-2\right)$					
•2	$\frac{1}{\frac{1}{x}-2+2}$					
• ³ x	¢					

[SQA] 4.
$$f(x) = 2x - 1$$
, $g(x) = 3 - 2x$ and $h(x) = \frac{1}{4}(5 - x)$.

(a) Find a formula for k(x) where k(x) = f(g(x)).

(*b*) Find a formula for h(k(x)).

(c) What is the connection between the functions h and k?

Part	Marks	Level	Calc.	Content	Answer	U1 OC2		
<i>(a)</i>	2	С	NC	A4		1993 P1 Q13		
<i>(b)</i>	2	С	NC	A4				
(C)	1	A/B	NC	CGD				
• $f(3-2x)$								
• ² 5	-4x							
3/20								
•4 ,	• ⁴ x							
• ⁵ i	• ⁵ inverse of each other							

2

2

[SQA] 5. A function *f* is defined on the set of real numbers by $f(x) = \frac{x}{1-x}$, $x \neq 1$.

Find, in its simplest form, an expression for f(f(x)).

Part	Marks	Level	Calc.	Content	Answer	U1 OC2
	1	С	NC	A4		1994 P1 Q19
	2	A/B	NC	A4		
•1	$f\left(\frac{x}{1-x}\right)$					
•2	$\frac{\frac{x}{1-x}}{1-\frac{x}{1-x}}$					
•3	$\frac{x}{1-2x}$					

[SQA] 6. The functions *f* and *g*, defined on suitable domains, are given by $f(x) = \frac{1}{x^2 - 4}$ and g(x) = 2x + 1.

- (*a*) Find an expression for h(x) where h(x) = g(f(x)). Give your answer as a single fraction.
- (b) State a suitable domain for h.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Part	Marks	Level	Calc.	Content	Answer	U1 OC2
(b) 1 A/B NC A1 • $g\left(\frac{1}{x^2-4}\right)$ • $\frac{x^2-2}{x^2-4}$	<i>(a)</i>	2	С	NC	A4		1995 P1 Q11
• $g\left(\frac{1}{x^2-4}\right)$ • $\frac{x^2-2}{x^2-4}$	<i>(a)</i>	1	A/B	NC	A4		
• $g\left(\frac{1}{x^2-4}\right)$ • $\frac{1}{x^2-4}$	(b)	1	A/B	NC	A1		
2 2 1 1 1 any utiliant which excludes 2	• ¹	$g\left(\frac{1}{x^2-4}\right)$)		$\overline{x^2-4}$	n which excludes 2"	

[SQA] 7. Functions f and g, defined on suitable domains, are given by f(x) = 2x and $g(x) = \sin x + \cos x$.

Find f(g(x)) and g(f(x)).

Part	Marks	Level	Calc.	Content	Answer	U1 OC2			
	4	С	NC	A4		1997 P1 Q3			
•1	• $f(\sin x + \cos x)$								
•2	$2(\sin x + \cos x)$								
•3	3 g(2x)								
•4	• $\sin 2x + \cos 2x$								

4

[SQA] 8. The functions f and g are defined on a suitable domain by $f(x) = x^2 - 1$ and $g(x) = x^2 + 2$.

- (*a*) Find an expression for f(g(x)).
- (b) Factorise f(g(x)).

Part	Marks	Level	Calc.	Content	Answer		U1 OC2
<i>(a)</i>	2	С	CN	A4			1998 P1 Q6
(b)	1	С	CN	A6			7
<i>(b)</i>	1	A/B	CN	A6			
					OF		
•1	$f(x^2+2)$		•3	$((x^2+2)+1)((x^2+2))$	-1) · ³	$x^4 + 4x^2 + 3$	
	$(x^2+2)^2$ -	1		$(x^2+3)(x^2+1)$	•4	$(x^2+3)(x^2+1)$	

[SQA] 9. Functions *f* and *g* are defined by f(x) = 2x + 3 and $g(x) = \frac{x^2 + 25}{x^2 - 25}$ where $x \in \mathbb{R}$, $x \neq \pm 5$.

The function *h* is given by the formula h(x) = g(f(x)).

For which real values of *x* is the function *h* **undefined**?

Part	Marks	Level	Calc.	Content	Answer	U1 OC2
	2	С	CN	A4, A1		1989 P1 Q19
	2	A/B	CN	A4, A1		
•3 ($g(2x+3) = \frac{(2x+3)^2 + 25}{(2x+3)^2 - 25} = \frac{(2x+3)^2 - 25}{(2x+3)^2 - x} = 1, -4$	25 = 0				

4

2

[SQA] 10. Functions f and g are given by f(x) = 3x + 1 and $g(x) = x^2 - 2$.

(a) (i) Find p(x) where p(x) = f(g(x)).
(ii) Find q(x) where q(x) = g(f(x)).

(*b*) Solve
$$p'(x) = q'(x)$$
.

Part	Marks	Level	Calc.	Content	Answer	U1 OC3
<i>(a)</i>	3	С	CN	A4	$3(x^2-2)+1, (3x+1)^2-2$	2009 P2 Q2
(<i>b</i>)	3	С	CN	C1	$x = -\frac{1}{2}$	
• ²	ss: sub ic: com ic: sub	nplete	0		• ¹ $f(x^2 - 2)$ • ² $3(x^2 - 2) + 1$ • ³ $(3x + 1)^2 - 2$	
•5	ss: sim pd: diff pd: solv	erentiate	e		• ⁴ $p(x) = 3x^2 - 5, q(x) = 9x$ • ⁵ $p'(x) = 6x, q'(x) = 18x +$ • ⁶ $x = -\frac{1}{2}$	

3

11. Functions f, g and h are defined on the set of real numbers by

٠	$f(x) = x^3 - 1$
•	g(x) = 3x + 1
•	h(x) = 4x - 5.

- (a) Find g(f(x)).
- (b) Show that $g(f(x)) + xh(x) = 3x^3 + 4x^2 5x 2$.
- (c) (i) Show that (x − 1) is a factor of 3x³ + 4x² − 5x − 2.
 (ii) Factorise 3x³ + 4x² − 5x − 2 fully.

(*d*) Hence solve
$$g(f(x)) + xh(x) = 0$$
.

Part	Marks	Level	Calc.	Content	Answer	U2 OC1
<i>(a)</i>	2	С	CN	A4	$3(x^3-1)+1$	2011 P2 Q2
<i>(b)</i>	1	С	CN	A6	proof	
(C)	5	С	CN	A21	(x-1)(3x+1)(x+2)	
(<i>d</i>)	1	C	CN	A22	$-2, -\frac{1}{3}, 1$	
•2	ic: inte ic: con ic: sub	nplete p	rocess	plete	• ¹ $g(x^3 - 1)$ • ² $3(x^3 - 1) + 1$ • ³ $3(x^3 - 1) + 1 + x(4x - 5)$ $= 3x^3 + 4x^2 - 5x - 2$	
 •⁴ ss: know to use x = 1 •⁵ pd: complete evaluation •⁶ ic: state conclusion •⁷ ic: find quadratic factor •⁸ pd: factorise completely •⁹ ic: interpret and solve equation in (d) 				or y	• ⁴ evaluating at $x = 1$ • ⁵ $3+4-5-2=0$ • ⁶ $(x-1)$ is a factor • ⁷ $(x-1)(2x^2+7x+2)$ • ⁸ $(x-1)(3x+1)(x+2)$ • ⁹ $-2, -\frac{1}{3}, 1$	

2

1

5

[SQA] 12.

- (*a*) The function *f* is defined by $f(x) = x^3 2x^2 5x + 6$. The function *g* is defined by g(x) = x - 1. Show that $f(g(x)) = x^3 - 5x^2 + 2x + 8$.
- (*b*) Factorise fully f(g(x)).
- (c) The function k is such that $k(x) = \frac{1}{f(g(x))}$.

For what values of *x* is the function *k* not defined?

Part	Marks	Level	Calc.	Content	Answer	U2 OC1					
<i>(a)</i>	4	С	NC	A4		1990 P2 Q6					
<i>(b)</i>	3	С	NC	A21							
(C)	2	С	NC	A1							
(a)	• ¹ f(g(:	f(x) = f(x - x)	- 1)								
	• ² $(x-1)^3 - 2(x-1)^2 - 5(x-1) + 6$										
	• ³ $(x-1)^3 = x^3 - 3x^2 + 3x - 1$										
	• $-2x^2 + 4x - 2 - 5x + 5 + 6$ and completing argument										
(b)				1 -5 2 8 <u>2 -6 -8</u> 1 -3 -4 0							
	• $x^2 -$	3x - 4 =	(x+1)(x-1)(x-1)(x-1)(x-1)(x-1)(x-1)(x-1)(x-	- 4)							
• ⁷ $(x-2)(x+1)(x-4)$											
(c)		ominator	r (= (x - 2	$(x+1)(x-4)) \neq$	0						
	•9 -1,	2, 4									

3

4

[SQA] 13. (a) f(x) = 2x + 1, $g(x) = x^2 + k$, where k is a constant.

(i) Find g(f(x)). (2)

(ii) Find
$$f(g(x))$$
. (2)

(b) (i) Show that the equation
$$g(f(x)) - f(g(x)) = 0$$
 simplifies to $2x^2 + 4x - k = 0$.

(ii) Determine the nature of the roots of this equation when k = 6. (2)

(2)

(iii) Find the value of k for which $2x^2 + 4x - k = 0$ has equal roots. (3)

Part	Marks	Level	Calc.	Content	Answer	U2 OC1		
<i>(a)</i>	4	С	NC	A4		1996 P2 Q4		
<i>(b)</i>	7	С	NC	A17, A18, A	.6			
(a)	(a) $\cdot^1 g(2x+1)$		(b) • ⁵	$4x^2 + 4x + k + 1$ AND $2x^2 + 2k + 1$				
	• ² $(2x+1)^2 + k$			• ⁶ $4x^{2} + 4x + k + 1 - (2x^{2} + 2k + 1) = 0$				
	• ³ f(x	$k^2 + k$			so $2x^2 + 4x - k = 0$			
	• 2()	$k^2 + k + 1$		•7	$b^2 - 4ac = 16 - 4 \times 2 \times (-6) = 64$			
				• ⁸ so roots real & distinct				
				0	2			
					$b^2 - 4ac = 16 - 4 \times 2 \times (-k)$			
				• ¹⁰	$b^2 - 4ac = 0$ for equal roots			
				•"	<i>k</i> = −2			

[SQA] 14. Functions f and g are defined on the set of real numbers by f(x) = x - 1 and $g(x) = x^2$.

- (a) Find formulae for
 - (i) f(g(x))
 - (ii) g(f(x)).
- (*b*) The function *h* is defined by h(x) = f(g(x)) + g(f(x)). Show that $h(x) = 2x^2 - 2x$ and sketch the graph of *h*.
- (*c*) Find the area enclosed between this graph and the *x*-axis.

Part	Marks	Level	Calc.	Content	Answer	U2 OC2
<i>(a)</i>	4	С	NC	A4		1999 P2 Q6
(b)	3	С	NC	A4		
(C)	4	C	NC	C16		
(a) $\bullet^1 f(x^2)$ stated or implied by \bullet^2 $\bullet^2 x^2 - 1$ $\bullet^3 g(x-1)$ stated or implied by \bullet^4 $\bullet^4 (x-1)^2$.9 10	$\int_0^1 (2x^2 - 2x) dx$ $\left[\frac{2}{3}x^3 - x^2\right]$ $-\frac{1}{3}$ dealing with - ve
(b) $\cdot^5 (x-1)^2 + x^2 - 1$ and complete proof • 6^6 sketch as shown y + (1, 0) = x						B
	• ⁷ mir	nimum at	$(\frac{1}{2}, -\frac{1}{2})$	calculated or on skete	'n	

4

3

- [SQA] 15. Functions $f(x) = \sin x$, $g(x) = \cos x$ and $h(x) = x + \frac{\pi}{4}$ are defined on a suitable set of real numbers.
 - (*a*) Find expressions for:
 - (i) f(h(x));
 - (ii) g(h(x)).
 - (b) (i) Show that $f(h(x)) = \frac{1}{\sqrt{2}} \sin x + \frac{1}{\sqrt{2}} \cos x$.
 - (ii) Find a similar expression for g(h(x)) and hence solve the equation f(h(x)) g(h(x)) = 1 for $0 \le x \le 2\pi$.

Part	Marks	Level	Calc.	Content	Answer U2 OC3
<i>(a)</i>	2	С	NC	A4	(i) $sin(x + \frac{\pi}{4})$, (ii) 2001 P1 Q7
					$cos(x+\frac{\pi}{4})$
(<i>b</i>)	5	C	NC	T8, T7	(i) proof, (ii) $x = \frac{\pi}{4}, \frac{3\pi}{4}$
•2 •3 •4 •5 •6	(b) 5 C NC 18, 17 • ¹ ic: interpret composite functions • ² ic: interpret composite functions • ³ ss: expand $sin(x + \frac{\pi}{4})$ • ⁴ ic: interpret • ⁵ ic: substitute • ⁶ pd: start solving process • ⁷ pd: process				• $\sin(x + \frac{\pi}{4})$ • $\cos(x + \frac{\pi}{4})$ • $\sin x \cos \frac{\pi}{4} + \cos x \sin \frac{\pi}{4}$ and complete • $g(h(x)) = \frac{1}{\sqrt{2}} \cos x - \frac{1}{\sqrt{2}} \sin x$ • $(\frac{1}{\sqrt{2}} \sin x + \frac{1}{\sqrt{2}} \cos x) - (\frac{1}{\sqrt{2}} \cos x - \frac{1}{\sqrt{2}} \sin x)$ • $\frac{\pi}{\sqrt{2}} \sin x$ • $x = \frac{\pi}{4}, \frac{3\pi}{4}$ accept only radians

2

[SQA] 16. Functions f and g are defined on suitable domains by $f(x) = \sin(x^{\circ})$ and g(x) = 2x.

- (*a*) Find expressions for:
 - (i) f(g(x));
 - (ii) g(f(x)).
- (b) Solve 2f(g(x)) = g(f(x)) for $0 \le x \le 360$.

Part	Marks	Level	Calc.	Content	Answer U2 OC3
<i>(a)</i>	2	С	CN	A4	(i) $\sin(2x^{\circ})$, (ii) $2\sin(x^{\circ})$ 2002 P1 Q3
(b)	5	С	CN	T10	0°, 60°, 180°, 300°, 360°
•2 •3 •4 •5 •6	ic: inte ic: inte ss: equ ss: sub pd: extr pd: so equation pd: solv	erpret g(ate for i stitute for cact a co plve a n	f(x) ntersector or sin 2: mmon f 'com	r actor mon factor'	• ¹ $\sin(2x^{\circ})$ • ² $2\sin(x^{\circ})$ • ³ $2\sin(2x^{\circ}) = 2\sin(x^{\circ})$ • ⁴ appearance of $2\sin(x^{\circ})\cos(x^{\circ})$ • ⁵ $2\sin(x^{\circ})(2\cos(x^{\circ}) - 1)$ • ⁶ $\sin(x^{\circ}) = 0$ and $0, 180, 360$ • ⁷ $\cos(x^{\circ}) = \frac{1}{2}$ and $60, 300$ or • ⁶ $\sin(x^{\circ}) = 0$ and $\cos(x^{\circ}) = \frac{1}{2}$ • ⁷ $0, 60, 180, 300, 360$

[END OF QUESTIONS]